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SUMMARY

The theory of cascades, made up of a series of flat plates placed
one behind the other, is extended to the case where the impinging stream
is not uniform, and the deduced properties of this cascade-flow are then
applied to the study of the wall interference between such a cascade-
like boundary and a vortex-source type of singularity. It is shown that
the induced velocities, produced by the presence of such a wall, are
equel to what is obtained by action of & suitably chosen "reflected"
singularity situsted on one side of the wall, together with the action
of another sultably chosen "transmitted" singularity placed on the other
side.

The concepis of a reflection factor end & transmission factor are
introduced to characterize various types of tunnel boundary, whether
this is composed of solild wall, open-and-closed sequences, or just a
free fluid surface. These ideas are then extended to cover the situa-
tion in which & pair of such walls are allowed to coalesce, expecially
in the event that one of the walls consists of open-and-closed portions
and the other is a fluld surface._This latter particular combination
of boundaries 1s called a perforgated wall.

Finally, the interference arising from an arbitrary general singu-
larity placed symmetrically in between two such perforated walls 1s
analyzed, and these results are then applied to the determination of
the particuler kinds of wall geometry that will produce no interference
effects in the case of a slender lifting wing and also in the case of
& symmetric profile having a finite thickness.

*“Studio dell 'Interferenza delle Gallerie Aerodinamiche con Pareti
a Pessure." Published in Atti della Accademis delle Scienze di Torino,

vol. 87, 1952-1953.
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- - CHAPTER I

1. Let attention be directed to a straight wall made_up of a series
of like-sized flat plates, each of chordlength L, and following one
right efter another, with a distance between centers of D. (See
fig. 1.)

Let y be the perpendicular distance of any arbitrary general
point from the straight wall. Furthermore, take Y = y/D as the ratio
of the normal distance to the "pitch" (or interval between the succes-
sive repetitions of the gapped wall).

The behavior of such a cascade of plates at an infinite distance
above and below the wall (i.e., at the locations where Y = tw), that
1s under action of an impinging streem, with a uniform undisturbed
velocity, denoted by the vector V4., 1s described by means of the two

equations

- - -
Vo = Vie = Vgoo (1 1)
- - ]
V‘V'oo = Vi + sz

where the velocity below the wall 1s denoted by the m  subscript and the
velocity in the upper reglon by the v subscript. Of course, V;w

stands for the induced velocity, produced by action of the gapped wall,
in a direction parallel with the length of the wall. The magnitude of
this induced velocity is provided by cascade theory and has the value

Voo = @Vieo (1.2)

where Vy, 1s the component of v o Wwhich is normal to the plates,
while q is related to the L/D ratio through the relationship

q = tan <1‘- I—’) . (1.3)

Provided it is understood that the i?nw vector is to be taken

as lying in the direction parallel with the horizontal extent of the
cascade-like wall, one may thus rewrite equations (1.1) as
- = -
Vmoo = Vioo - c!.Vnoc:
. 5 (1.4%)
Vo = Vie + Wigeo
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The sole condition which 1t 1s necessary to stipulate in order that
the equations (1.%) should hold true is that Y = y/D must be infinitely
large. It may be observed that tThese equations also remain unaltered
provided that the L/D ratio stays constant. In view of these facts,
one may proceed to treat the case where y is merely of finite size,
however, by simply letting L and D +tend toward zero in megnitude,
but in such & manner that the ratio between them is retained at a fixed
constant value. The assumption will henceforth be explicitly adopted
that the pitch and the chordlength are, in fact, now both to be infini-
tesimally small, in comparison with any other of the distances that
might enter into the argument. In consequence of thls assumption, there-~
fore, it follows that equations (1.4) become converted into just

— -
T =¥ - ot (1.5)

- - -
Vy, = Vy + Qv

and the gapped wall should thus be looked upon as merely a plate which
is refracting the streamliines.

On this basis it may also be assumed that the relationships given
as equations (1.5) will not only hold true for a uniform stream but that
they will, in sddition, also-be valid for any velocity distribution
whatsoever, provided merely that the pitch and chordlength are taken
to remain infinitesimally small with respeect to the radil of curvature
of the streamlines existing in the flow Jjust below and Jjust above the
perforated wall.

2. Now let the flow field be referenced to & complex planar coordinate
system such that the (reals) x-axis coincides with the direction of the
straight wall, while the (imaginaries) iy-axis is in the direction lying
perpendiculer to the wall; the origin is taken to be at any arbitrary
location. (See fig. 1.) The "outside" region of the flow is thus the
infinite half-plane for which y > O, while the "inside" portion of the
flaw is the infinite half-plane correspondling to the points for which

y < 0. Then upon rewriting the vector operations given as equations (1.5)
ag separete scaler equations, it 1s seen that

Vox = Vix - qviy and Vi =V, + qviy
(2.1)
and from comperison of the forms of these relationships it follows that

Vg = Vyy = Vy (2.2)



4 . T NACA T™ 1429

V. -V =2qV (2.3)

vX mx y
The behavior of the flow in pessing through the cascade-like wall
is thus completely defined by means of equations (2.2) and (2.3).

The fact that the presence of the cascaded wall does not change
the normal component of velocity at all is rather surprising. On the
other hand, it is espparent that the tangentisl component of the flow
undergoes & sudden Jump as the flow passes the grid pattern of the wall.
The magnitude of this Jump in the tangential wvelocity component is pro-
portional to the normel component of the Impinging stream. Now this
change in the tangential velocity-component, brought about by the gapped
wall, may be interpreted as though it were asctually due to the action
of a distribution of vortices placed along the x-axis and having a
strength 7, whose magnitude is given by

7 = vmx - V-v-x = —2qu (2°)‘")

For the sake of convenience, let a running coordinate along the
x-a8xls be denoted by the symbol ¢. Then the expression for the com-
plex potential governing the distribution of veloclties generated by
the presence of the gapped wall is readily seen to be

=1 ®

It should be pointed out that everything that has been said so far
is valid only if the flow field is isocenergetlc, and it will be taken
for granted in what follows that this is the situation under exsmina-
tion, so long as the case of the mixed boundary condition (the perforated
tunnel) 1s not being treated.

In what follows, 1t will be very convenient to make use of the
expression for the complex velocity, which may be written down at once
as ' o oo T

e}
v _ _9 g _ : 2.6
ﬁf_mvy(g)z_g . (2.6)
All possible aerodynamic configurations which are met in practice
can be bullt up out of the fundameéntal situation whereln there exists
in the field of flow one single arbiltrary genersl singularity of the
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form

L

A=Q+ n T (2.7)

(i.e., a combination of s source of strength Q with a vortex of inten-
sity T'). In what follows it will be sufficient, therefore, to concen-
trate attention on the study of the flow field resulting from the pres-
ence of such a singularity, A, placed at the position denoted by -iY,
(see fig. 1) from the cascade-like wall, and immersed in a stream flowing
parallel with the x-axls, the magnitude of whose velocity vector is taken
to be V., at infinity.

The complex velocity corresponding to such a flow field is seen to
be (with the aid of eq. (2.6)):

[>]
aw'’ A 1 q ag
==V = —— - = 2.8
dz ¥ oxz+ 1¥, im L/:w - & (2.8)
in vhich it is pleinly seen that
aw’

v (g) = -I (d ) (2.9)

LR P

holds true.

3. Consequently, it is clear that equation (2.8) turns out to be just
an integral equation in the complex velocity. The solution of thils equa-
tion will be attacked, however, by making use of an indirect route,
wherein one relies on the analogy which exists between this case and

the similar problem with which one 1s confronted when dealing with =a
solid wall for the boundary (thus the solid-wall example represents the
limiting case of cascade-type boundary, for which the chordlength of
each portion of the wall becomes equal to the "pitch", that is to say,

in the limiting case, one has L/D = 1, and q =

In this anslogous solld-boundary case, it 1s well known that the
requisite distribution of vortices lying along the x-axls that gives
the proper solution to the problem inside_the tunnel (y < 0) is equi-
valent In all respects to & singularity A (conjugate of A) placed
at the point +i¥g (wvhich is the image point of -1¥, with respect
to the straight wall), while the requisite distribution for those points
lying outside (y > 0) is equivalent to a singularity -A placed at the
point -iY¥, (which thus cancels the effect of the original singularity

located there).
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Now this equivalence, which 1s evinced in this special case where
one 1s dealing with a solid boundary, suggests the possibility immedi-
ately of extracting therefrom & generalization which will be applicable
even in the case where one is concerned with the gapped-wall type of
boundary. 1In fact the natural thing to do is to take the expression
for the complex velocity corresponding to a field point lying "inside"
in the form - --

7"
dWy =V, + A 1 AT 1 (3.1)
dz 2t z + iYo 2% Z2 - iYo

wherein A' stands for a suitable singularity located at the point +1Y,

(the imege-point of -1Y,). The value of this latter singularity may be

determined by invoking the condition that equations (2.8) and (3.1) should
be identical; that is to say, it must be true that

aW," AWy A 1 qQ ® ag
e A e N (Y (3.2)
dz dz 2x z + 1Yy wi J e z - ¢

But it can be seen by reference to equation (3.1) that the value
of vy(g) is linked to the singularities from equation (2.9) by the

relation:

_ 1 dWm" d-Wm"
Vy(g) B EZE <dZ >Z=§ h < dz )Z=g

— — ’
1 A A A Al
= + - - (3.3)
bni |68 - 1Y, &+ 1Y, &+ 1Y, & - 1Y,
This value of vy(g) is now to be inserted into the integrel expres-

sion arising in equation (3.2). The indiceted integration is actuslly
carried out merely by integrating along the whole x-axis, entirely within
the domein of reals. In order to make use of the powerful methode of the
complex variable, it should be observed, however, that the integrand is
always going to be an infinitesimal of the second order along the whole
circle at infinity in the complex plane. Then, 1f it is formally asgreed
to perform the integratlon in more generality around a closed contour in
the complex plane, consisting of the x-axis and the semicircle at infinity
for values of y > 0, and if the direction of the path of the integration
is teken to be that of the positive sense for the varieble of integra-
tion, ¢ (which is now considered to be complex), it follows that the
sought value of the real integral is equivalent to an integration in the
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complex plane, which can be carried out by having recourse to the theo-
rem of residues, to glve

fmv(g) at =—l—§£ E_,_E ___ & _ A'W at
e ¥ z - £ lLix £ -i¥o £+ 1Yo &+ 1Yo & - 1Yo z - &

_1 A _1_ &
=5 5 (3.4)

Thus, the complex veloclty of the flow now under examination may be
written down at once, by referring to equation (3.2), as

dwm' A 1 + a 1 (A - &) = dwm (3_5)

=V_+ = = ——

dz ® 2nz+ ¥y 2rni z - 1Y, dz

Hence, because of the equallty which must exist between the complex
velocities for the two flows, one is led to the conclusion thet

r _ 4 1 Y _ & a
At =7 (A -A)_Aq_i (3.6)

It is obvious, therefore, that the reflected singularity A', when
having the velue Just determined, will satisfy the requirements imposed
on the behavior of the flow in consequence of the presence of the gapped
wall. Hence, the problem which was set has been formally solved in
closed form. TFor the sake of convenience, in what follows, the above
result will be written more compactly as

A' = I‘K (3-7)

where r i1is defined as the reflection factor of the wall. Thus it is
seen that

2
T = q = q - -'1'- q (3.8)
a-1 g2+1 1q2+1

This result mey be interpreted by means of the statement: The
"reflected" singularity for a gapped wall is equivalent to the reflec-
tion factor (complex) multiplied by the complex conjugate of the origi-

nel singularity.

If one now goes on to investigate in like manner what heppens when
the field point lies outside of the wall, where y > O, it is necessary
to carry out the integration indiceted in equstion (B.h), in the complex
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plane, by going around the closed curve composed of the entire x-axis

and the semi-circle at infinity lying in the region where y < 0. The
sense of this integration is opposite to that of ¢ in this instance,
and the 2z belongs now to that half of the plane where y > O. Thus

the value of the integral becomes now

-

® a1 E A A A de
f_wvy(g)z-g 4n1§l;-1xo+g+iyo E + i, g-ﬂjz-g

—
1_A __1L_A __1__A 1 -3 (3.9)
2z+ 1Y, 2z+ i¥y, 2z + 1Y, qQ+ 1

The complex velocity pertaining to the downstream flow is thus
obtained by inserting the ebove expression into equation (2.8), with
the result that

oy o LA _ 1 _A__1 2(1- Q)
dz ® 2rz+ 1Yy 2rz+ 1Y 1 q+ 1
A 1 Q A 1 —
= Vo + — 1 - = Vo + o =——————— (1 - T
® 2:tz+:LYO< q+i) ® 21cz+iYo( )

(3.10)

That 1s to say, viewed from & point outside the gapped wall, the
field of flow cen be looked upon as though it were generated by a single
singularity A(1 - F) located at the point -iYoy. In analogy to the
practice common in optics, this will be called a "transmitted" singu-
larity. The magnitude of this singularity may be interpreted as belng
the product of the magnitude of the originsl singularity and the trans- .
mission factor T =1 - F. It then may be noted that

T=1-7=1~ 1 = 1 t;——L— (3-]—1—)
a+1 241 1g24+2

It 1s worth especial notice to point out the extraordinarily remark-
gble fact that each reflection leads once again to use of the complex
conjugete of the original singularity, but nothing of a similar nsture
arises when one works with the transmitted singularity.

Meking use of this observation, one may now easily see the inter-
connections in the singularities which one obtains when the original
singularity lies either above or below the gapped wall. To do this,
let & sketch be prepared thet shows the location of the singularities
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and the trace of the gepped wall, lying parallel with the x-axis. (see
fig. 2.) Now imagine that this scheme of singularity-plecement is
reflected In a line lying parallel with the x-axis. This reflection

is made in such & way that each quantity will have a complex conjugate,
as indicated.

For simplicity's sake the singularities in the flow which have thus
far been under exemination are written with a bar over them. This is
done in order to cbtein a result which will be directly valld for the
reflected imsge of the field of flow Just about to be studied, wherein,
for sake of preciseness, i1t will be assumed that the original singular-
ity is located at a point lying above the gapped wall. If the original
singulerity lies beneath the gapped wall, i1t can be seen, by reference
to the relationships already sketched in figure 2, that the only thing
which needs to be modified is that the reflection and trammission fac-
tors should be teken to be the complex conjugates of the corresponding
reflection and transmission factors applying in the case where the
gapped wall is loceted below the original singulaerity.

. Everything that has so far been derived may be summarized quite
succintly merely by the statement: The presence of a gapped wall in
the field of flow coming from the singularity A is equivalent to:

if the field point lies inside, a "reflected" singularity rA located
at the image polnt, while if the field point lies outside, then a flow
is generated which is equivalent to the presence of a "transmitted"
singularity +TA located at the place where the original singularity
was situated.

The factors of reflection and of transmission can thus be written
as (provided one makes use of & double-level sign, of which the upper
is to be selected if the singulerity lies above the gapped wall, and
the %ower of which applies if the singularity lies below the gapped
wall):

2
r = a = q T -]; e ()-l-.l)
q = i q2 + 1 1 1+ q2
T=1 = g = 21 i%:— 4 5 ()—I-.2)
QF L g2 1+ ¢

These factors are linked to each other by the relations
T =1 ~ -I-' (11-.5)
r=1-~ -'F ()-l-.ll-)
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Of course, as was sald earlier in Article 1, the value of q 1s obtailn
from - :

q = tan (1’- -Ii) (k.5)

where L stands for the solid chord length of each open-and-closed piece
of the gapped wall, and where D represents the "pitch", or interval
between sequential pleces of the breached wall.

Since all possible singularities, elther of a concentrated or dis-~
tributed type, can be considered as acting like sources and vortices,
the results Just obtained can be made spplicable to all aercdynemic
singularities.

As & sort of check, it can be noted, through recourse to equa-
tion (4.1), that when L/D approaches unity (the solid-wall case) then
q becomes infinite and r becomes unity too; that is to say, when
L/D = 1, the "reflected" singularity is simply equal to A, regardless
of what the relative location of the singulerity is with respect to the
wall. On the other hand, the "transmitted" singularity in this case
is 1TA, where T = 0, and thus this result Jjibes with the situation
with which one already is famillar.

If the L/D ratio tends toward zero, however, which means that
the wall effectively disappears (but it does not become a fluid sur-
face, because it 1s being assumed that the flow is isoenergetic), then
q4 becomes zero, and eonsequently r =0 and T = 1. In this case,
therefore, there is no reflection teking place and the "transmitted"”
singularity is A = A, and it thus coincldes with the originsl one.
This is quite obviously the correct result, because if nothing is pres-
ent to disturb the flow, 1t remsins the same as 1t started. Hence, the
above derived theory appears to be fully Justified, and accords with
known results in the two limiting cases thus tested.

5. It was explicltly mede clear in the ebove treatment that only the
behavior of those interactions was being examined which apply strictly
to the case of a gapped wall placed In isocenergetic flow. In actuality,
however, a perforated wind tunnel would require the study of nonisoener-
getic fields. This is so because the real perforated tunmel can be
thought of as being a superposition of a. free fluid surface (that is,
this boundary is Just the line of demarcation between the tunnel Jet

and the external astmosphere) upon the gapped-wall type of flow. When
two such boundaries are allowed to coalesce, they constitute together
what will now be called a perforated-wall tunnel, or simply a perforated
wind-tunnel. '
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It is well known that the effect of a free fluld surface (two-
dimensional) operating in conjunction with a singulsrity A 1is equiva-
lent to the presence of a singularity -A placed at the image point
of A; that is, the reflection factor for a free fluid surface is

r' = -1 (5-1)

and consequently

T':l—?.: =2 (5’2)

In order to study most conveniently the case of such mixed bound-
aries, 1t is best at first merely to handle each wall separately and
then let them coalesce. By aid of this process of bringing the two
walls into juxtaposition, one mey thus deduce what the appropriate
reflection factor should be for such "mixed" walls.

To proceed with this analysis of the double walled tunnel, it is
convenient to denote the gapped wall as Pg and the free fluid surface
as Pp. Also let A =Q + P/i represent a singulerity located inside
the wall. (See fig. 3.) '

It should be recalled that the selfsame wall willl have reflection
and transmission factors of r and T, respectively, or of T and 7T
depending upon whether the radius vector, which originates at the singu-
larity which is giving the reaction at the wall, approaches the wall in
question from above or from below.

If one imagines that the radius vector emsnating from the singu-
larity A has the same attributes as would appertain to a ray of light
issuing from this source, it is quite easy to find the locations of the
multiple reflections Rg, Rfl, sz, « + . which are produced by action

of the two walls under study, and at the same time it will be equally
easy to establish where the points of incldence are located depending
upon whether the ray approaches them from below or above.

By use of a system of notation which i1s perfectly obvious, it may
be stated that the first reflection point is thus given by the relation

Ry = Tgh (5.3)

In order to arrive at the point £y, the ray u must undergo s

process consisting of a transmission at Pg characterized by the fac-
tor Tg; a reflection at Py characterized by a reflection factor Ts;

and in turn another transmission at Py characterized by the factor 4.
As a result, the ray in question now appears to lssue from the reflection
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point Rfl, and the strength of this reflected singularity is thus given

as
1l -

Rp, = (ATs)rerg = ATgmy” (5.4)
In order to arrive at the point f5, the ray must;undergo 8 process

consisting of three reflections and two transmissions. As a result the

ray will then appear to lssue from the reflection point Rf2, and the

strength of this singularity will be found, according to a process which
is entirely analogous to what was done in the previous case, to be

Rp, = ':(Es)Ff] Trs I TeTp = Arprg2rofg = Re. ToTs (5.5)

The simple repetition of this process of tracing out the paths of
the light ray thus leads one to write in general:

Rf(n+l) - an?fié ='Rf1(rff5)n = K;fTse(rff%)n (5.6)

It is now time to see what happens when the two walls Py and Py

are allowed to come closer and closer until they finally coincide. It
g0 happens that now all the "reflected" singularities once again come
together and coalesce in the image point of A, while their magnitudes
are all gathered into one single "reflected" singulaerity A¥*, the mag-
nitude of which i1s -

A¥ = K ;s + Z rfTse(rf—fs)n = A_rm ’ (5'7)
n=0 )

vhere T, stands for the reflection factor of the perforated (or mixed)

wall. By carrying out the indicated sum of the geometric series, it
follows thet (provided it 1s taken for granted that Tg = 1 = fsgz

- —  _ (1 -Ty?
Tm = Tg + Tr i;f“%i%‘ - (5.8)
- 8

lThe bar placed over the symbols in parentheses 1s used éo indicate;
that one should take the complex conjugate of the indicated guantity.
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In the case in which interest is now focussed, the wall Pp 1is to

be taken as a free fluid surface, and thus the reflection factor which
pertains to a perforated tunnel is obtained by meking use of equation (5.8)
(which is true in general) by particularizing it to the case wherein Te

is set equel to Tp, and where Tp = -1, and where, besides, Tg = —b—.

q -~ 1
Thus now
fyo,  (oT)? -l oo (5.9)
m=Tg = = == = — .
1+ Tg Tg+ 1 o2 _ % q+ 1

It is &lso clear that if the perforated tunnel wall happens to be
below the singularity, the reflection factor is the conjugate of the
one Just now deduced.

One may check the above-derived result by letting the L/D ratio
very from one limit velue to the other and noting whet transpires. For
instance, let L/D =1 first, and then q = » (a solid wall and a free
surface coming into coincidence) and thus the reflection factor in this
case is rp = 1. On the other hand, if L/D 1s allowed to be zero,

then q =0 (the solid wall disappears but & single free fluild surface
remsins), and in this case the reflection factor is r, = -1. These

results are Jjust what one would expect.

It is worthwhile pointing out that lrm[ = 1, and therefore one
may write :

ry = et (5.10)

where
3 = argument (rp) = G(L/D) (5.11)
The value of this functional relationship § = G(L/D) has been
compubed for a number of values of L/D, and the results are reported

in the eppended table for the case where the tunnel well lies under-
neath the singularity A.

L/D 3 L/D 3

o} ~3.14 0.5 -0.9%
.05 ~-3.125 .6 -.T22
.1 -2.54 7 -.500
.2 ~1.995 .8 -.32
.3 ~1.55 .9 -.158
A -1.21 1.0 .00
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CHAPTER IT _ o

1. In the next step towards understanding the action of a perforated
wind-tunnel, it 1s necessary to teke into considerstion ‘the effect of
both of the perforated walls P and @, one of which lies above and the
other lies below the singulerlity A. The dlstance between these walls
1s essumed to be the helght h, and they are symmetrically placed with
respect to the singulerity, which is itself considered to lie at the
origin of the complex coordinate system to which the flow is referred.

It is clear that the usual multiple reflections also take place
here, and in consequence 1t will be true that the veloelty at each polnt
in the reglon of the flow comprised between the two walls will be composed
of the sum of the undisturbed velocity 7V, (the velocity vectors produced

by direct action of the singularity A, together with the velocities
arising from interference from all the reflected singularities).

Now let ::'p and rq be the reflection factors for the lower wall

and upper wall, respectively. Then if one exemines the ray u, enmanating
from A and progressing downward from A (this path is denoted in fig. 4
by meens of a solid line) it will be seen to be reflected at the wall P,
and because of this it will appear to have issued from the singularity

Py located at a vertical distance downward of -ih., The strength of

this singulexrity is given by the relation

P, = A_rp ) (1._1)

Continuing on with the tracing out of the path followed by the
ray Uup, it will be recognized that it 1s again reflected from wall Q,
and it will thus appeer to have come from the singularity Pl' , located

et & vertical height of 2ih, and having a strength given by

'=— = A = =
Py Pyry (Arp)r.q_ Aryry (1.2)

It is intuitively obvious that the path of the ray up will be

periodically repeated in such a way that any two successive "reflected"
singularities Py' and Pjy; will have the same relation between each

other as the singulerities Pl' and A have. Thus it will be true in
general that -

| | — l—
Pn+l = Pn rprq (1.3)
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and consequently it will be true thet

P = A(Fprq)n (1.4)

while at the same time the ordinate location of the singularity BP,'
will be given as

' = i2nh (1.5)

Returning now once again to take up the question of the continuation
of the path of the ray U after it has undergone the last reflection

consldered previously, it will be seen that it 1s once agaln reflected
at the wall P. 1In consequence of this reflection the ray now will
appear to0 be emsnsting from the singulerity Po which lies et a distance

-i3h “Dbelow the wall, and the strength of which is given by

= = T = T -
P2 Pl'rp '.K:c':g:r-qrIJ Pqurp (1.6)

It will agaln be sbundantly clear, therefore, that any two successive
"reflected" singuleritlies P,,; and P, will be interrelated in exactly

the same way that the singularities P, and P; were found to be
connected above. Thus, in this case, it is obvious that

Ppy1 = PaTqlp (1.7)

and consequently it will be true that
- n-1 _ - n-1
P, = Pl(rqrp) - Irp<rq_rp> (1.8)
and the ordinate distence of P, 1s given as
iyp_ = -i(2n - 1)h (1.9)

By means of this procedure half of the reflections of the singularity
at A have now been determined. In order to find the other helf one may



16 NACA TM 1429

proceed to follow an entirely anslogous development which stems from the
tracing out of the path followed by & ray Uge The route taken by this

ray will be entirely symmetric to the one traversed by Up (this new

path is also drawn in on fig. 4) except that now the order in which the
walls are encountered by the ray ug will be inverted from what was

true for the up ray. It is quite evidently sufficient, therefore,

merely to interchange the symbols rp &and rq in the above-written

formulas in order to arrive at the correct expressions for the magnitudes
of the "reflected" singularities Q, end Q,', vhich lie at locations

which are symmetrically pleced with respect to the a.naiogous singular~
ities P, and Pn'. The sought values sppertalning to this half of the

"reflected" singularities are thus obtained as:

q =Ar (p q)n'l (1.10)
iyg = i(2n - 1)h (1;11)
Qn' = A(?qrp)n (1.12)
end iy, ' = -i2uh (1.13)

2. It is now convenient to ilntroduce the factor f(z-zo) , Which is the
amount by which the magnitude ‘of an arbitrary singulerity located at the
point 2z, must be multiplied in order to determine the msgnitude of the

complex velocity produced at the polnt z. By meking use of this eonven-
tion and by having recourse to the expressions Jjust derived 1in the pre-
vious paragraph, one may write down the value of the complex velocity as
a sum of all those complex velocitlies which are produced by action of the
multiple reflections in the two perforated wells. This total value for
the complex velocity is thus '

00

g‘% = A ergqrp)n'lf[z + i(on - l)h:l + | _

n=1

Z rq(F lf[z -i(en - )uly 4+

n

=1
A {Z nf(z - ionh) + z ('fqrp)nf(z + i2nh) (2.1)

n=1 n=1
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Since in actual practice it will be true that the most commonly met
tunnel configurstion will be one for which both of the perforated walls
- have the same reflection properties, and since there will be a good deal
of simplification resulting from such an assumption, it will be assumed
that this is the type of tumnel with which the following discussion will
be concerned. In this case, 1t is true that

T, =Tq (2.2)

and consequently, equation (2.1) will become simplified to Just

[>]

dw_— 2n-1. .
E=a er glz + 1(2n - 1)n] +

n=

2 (Fp)? Pz - 1(2n - 1)ul} +

n=1

- A z rpgnf(z + ionh) + 2 (T"P)znf(z - ionh) (2.3)

n=1 n=1

One can bring about another great simplification in the work if
the complex velocity is only sought for points lying along the axis of
reals (the x-axis). If this limitation is sgreed upon, then it will
be seen that the arguments of f are complex conjugates in pairs, and
likewise the sums of such pairs thus also will be complex conjugates.
Consequently, the sum total of the arguments is just twice the value
of the resl pert of each of the individual ones, and it follows that

dw
<d2>x
2R(A)R z [ rpzn-lf[x + i(2n - 1)n] + rpznf(x + iEnh)} +

: |

n=1

o0 [+2]
2AR z rpen-lf[x + i(2n - Dnj + %32 rpznf(x + 12nh)
n=1 n=L

) 12I(A)R Z -[rpenf(x + i2nh) - I‘Pzn—lf[x + i(2n - 1)11\} (2.4)

L

n=1
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It may be noted that each term of the indicated sums 1s the sum
of two terms which involve the quantities 2n - 1 and 2n. It 1s con-
venient to reletter these multipllers as m &and m +-1, respectively.
Hence one may now rewrite the expression for the complex velocity more
concisely as

(%)x = 2R(A)R i rp £(x + imh) + 21I(A)R i (—rp) Te(x + 1mh)  (2.5)

m=1 m=1

Regerdless of what the expression for the function f happens to
be, it is worthwhile pointing out that it is always possible to develop
equation (2.5) in a MacLaurin series provided one only moves away from
the origin a short distance, that 1ls to say, provided the value of x
is small in comparison with the width of the tunnel, h. TUpon carrying
out such a development one obtalns the complex velocity as

¥\ _ 2R(A)R Y rpmf(imh) + 21I(A)R Y (.rp)mf(mh) +
(dz)x gg; ;Z;

x J2R(A)R i rpm% £(x + mil)]xw +
m=1

[

211(A)R Z (- P)m,;%( £(x + imh)] ol *

m=1

In order to carry on the analysis any further it is necessary to
select a specific functional relationship for f£(x + imh) for each
particular case, depending upon what type of singulerity is under study.

3. In the case where the singularity is made up of & source of strength,
Q, and a vortex having & circulation, I', that is, for the case where

A=Q+ %; the appropriate form for f 1is

1

2x(x + imh) (5.1)

f(x + imh) =

and consequently
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2 .M © (.M
(2E) =82 3 E; J _E_.R }Z +
dz/, wh = im  dxh T im
m=1 m=1
= r
x _Q_RZI’P Z_('__ (3.2)
hixh ™
m=1

provided the series development 1s carried out only as far as the first
term in x.

L, In the case where the singulesrity ie a doublet, of moment M, with
1ts axis orientated so as to be parallel with the x-sxls, the appro-~
priate form for £ 1is

£(x + imh) = + 1 (%.1)
ox(x + imh)@

and consequently

24

a\ _ M T, e Mo N, .
<dz>x e Z m? h232;3+ (4.2)

m=1

IL‘?

provided the series development is once again merely carried out as far
as Tthe linear term in x.

5. In the preceding two Articles, one 1s confronted with the necessity
of summing certain series which are expressed as follows:

i (E=p)™ & i (+1)® co8 md + itsin md (5.1)
o (1m)® = (im)

where t =1, 2, 3, - ~ * .

The latter form for the series results from acknowledgment of the
fact that

rp=2L‘_3i_“l=cosa+1sine (5.2)
2Q - 1 + 1

inasmuch as [ppl = 1. While it 1is also true that the restriction
-« <3 = arg (rp) <0 (5.3)
holds.
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The case 9 = O corresponds to that of a solid wall boundary, while
the case 9 = - corresponds to the situation where the boundary is a
free fluld surface.

Now, depending on whether one employs the + slgn or the - sign in
equation (5. 1), different trigonometric series are obtained, and like-
wise when different values of t are inserted into the formulas differ-
ent trigonometric expressions are generated; bub these are all easily
summeble, and the several cases of interest are presented below:

Case wvhere t =1 &and the sign is +:

xR m o0
o _ sinmd _ _x 3 )
EZ im Z m 2 2 (5-4)
m=1 m=1

for 4§ lying within the open intervel running from 0 to -2x, while

o .
RZ—%:O for 9 =0 or 9 = -2x

Case where t =2 and the sign is +:

' QO m o0 2 2
r cos md _ nd 9 1t .
R g —P—m2 E pe-aalalrs tT v (5.5)

for 4 lying anywhere on the closed Interval from O to -2x, including
the end-points. ’

Case where t = 3% and the sign is 4+:

oo m o o 3 ,(2 )
sin mﬁ m& 3 3 )
E —P—— ) t et (5.6)

for ¥ lying anywhere in the whole closed interval from- 0 to -2x.

Case where © =1 and the sign is -~: -

o

_Z_(:‘ix_)z_ Z(l)msinm'& _

m=1

N =

3 (5.7)



NACA T™ 1429 21

for 3 lying within the open intervel rumning from -x ©to +x while

(- 4]

m
321%)—.-.-.0 for ¥ = &x

m=1

Case where t =2 and the sign is -:

R i _(__éL i ( l) cos md _‘8[:2_ 1'[2 (5.8)

m=1

IGI

for 3 lylng anywhere on the closed interval from -n %to +ﬁ, including
the end-points.

These expressions are all that is required in order to be able to
describe the behavior of the velocities along the axis of symmetry of
the wind tunnel in the neighborhood of the singularity. By substitution
of the sbove-evalusted series in the expression given as equation (3.2),
it is seen that the sought formula for the complex velocity along the
axls of symmetry turns out to be, in the case of a singularity of the

form A=Q,+-I{‘-:

awv = -2 (x4+8) -L_ 38+
az )y 2xh 2ish

x| Q@ (x2 82 r (88 «°
E[EE<—5—+1‘I'B+—2—)+EE<—2--'6' (5-9)

while if the properly evaluated trigonometric series are substituted
into the expression given as equation (4.1) it is seen that the sought
formula for the complex velocity along the axis of symmetry turns out
to be, in the case of a doublet with moment M:

2 2 2 2 3
(ﬂ) = -—M—-(-’-t—+1r-8+3->+3§ M <ﬂ1§,+-ﬂ:15 +%) (5.10)

dz/ h oxhe \ D 2
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CHAPTER IIT

1. After having gathered together all the necessary basic tools as

derived above, it is possible now to go shead with a study as to Just
how one might eliminste the interference effect at certain important

locations 1n & perforated wind tunnel.

In this study two lmportent limiting cases will be examined; viz.,
in one case the infinitesimally thin lifting wing will be treated (the
antisymmetric problem), while in the other case the symmetric wing of
finite thickness but at a zero angle of attack will be studied (the
symmetric problem).

As ig well known, the lifting wing (antisymmetric case) is handled
by 1magining that a vortex is concentrated at the querter chord point
of the airfoil with chordlength 1, and the boundary condition that must
be satisfied is that the streamlines become tangent to the mean camber
line of the profile at the three-~quarter chord point.

Now, 1in general, because of the interference effect of the surrounding
wind tumnel, it will be true that the local engle of attack at the three-
querter chord point will no longer be_}he same as that angle given by the

difference in direction between the V., direction and the chord line of

the profile, but instead this local angle of attack is increased by the
4 gad . -

€ =

R

(1.1)

where vy is the component, teken in the direction of the y-axis, of the
velocity induced at this point by interference action of the tunnel walls.

Consequently the boundary condition which now has to be satisfied
is . . . _

I =nila + €)V, (1-2,

where I’ 1is the circulation exlsting around the profile 1ln question, and,
of course, o« 1s the angle of attack of the chordiine of the airfoll with
respect to the free-stream direction, and 1 represents the chordlength.

If one wishes to eliminate the wall interference it is obvious that
this means that one must counteract or cancel out the increment €, and
thus the vy component must be annulled at the three-quaerter chord point.
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Let it now be assumed that the profile is located in the tunnel in
such a way that the point where the vortex T' 1s considered to be concen-
trated lies on the axis of the tunnel (the x-axis) and that this point
is also the origin of coordinetes. Thus the three-quarter chord point
then lies at a distance x = 1/2 downstream

By reference to egquation (5.9) of Chapter II, it will be seen that
under these stipulations one may write

W 2 2
v (1/2) = -;(g;)xzz/e —ﬁ[sg;(%- - %)] (1.3)

and thus the verticel component of induced velocliy may be eliminated by

making
§ = 2]1!] 4_-‘} 1+ 7’_ __:l[l i

Since 9 = arg(rp), it is less than zero and thus one must select
the negative sign in the above formula.

On the other hand, 1f one would rather consider that ¥ 1is the
fixed quantity, then it will be necessary to choose the 1/h ratio so
that '

1/h = —228 (1.5)
362 - ﬂ2

2. Now the symmetric problem is to be treated.

It is well known in this case that the symmetric profile can be
simiated by employing & distribution of sources and sinks whose totael
strength is actuslly zero, and thie dlstribution is equivalent (as far
a8 1lte effects on the field of flow, at points far away from the loca-
tion of these singulerities, are concerned) to the effect of placing a
doublet, whose moment is going to be proportional to the cross-sectional
area of the profile, i.e., M = -V S, at the centroid of thils area.

Let 1t be assumed, therefore, that the centrold of the profile is
placed so as to coincide with the origin of the coordinate system for
the tunnel flow, and let x be the absclssa value for the point at
which one wants to cancel out any interference effect that would arise
from action of the constraining wind tunnel walls. The magnitude of
this induced velocity will thus be expressible as
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ar\ . M (=2 62). ox (k28 , 782 85)
(-d—z—)x == E[(—i— + nd + —2— .— ._T‘.I._(T + —2—- + z—] (201)

and in order to cancel 1t, one must obviously lmpose the condition, there-
fore, that (since § 1is to take on only negative values):

2 2 2 2 3)
s 3 2x (78 |, nd 3
LA FJ F e e EE L A ) = .
3 4+ x > o < 3 5 3 0] (2 2)

This relationship may be rearranged into a more convenient form to
work with, and upon carrying out this simplification it will be seen that

_.3 (8 + o0.k2ax) (8 + 1.578x)
=*3 (3 + 2)(9 + 2x) (2.3)

ayt

If the value of° 4 1is conflned 4o the closed interval running
between zero and -m, then the ratio x/h varies continuously from a
value of +» %0 a value of - and passes through the point zero when
9 = ~0.422x.

The behavior of this relationship for .x/h 1s of particular inter-
est in the nelghborhood of the value where ¢ = -0.422x (or where
x/h = O, that is). In the region of the 9 close to 3 = -0.422x the
expression for x/h may be developed in & series to give simply, to
firet order, that ' :

gf.: -0.462(% + 1.325) + . . .

where - ' (2.4)
I<0

Conversely, 1t 1s easily seen what the expression for ¢ will be
as a function of x/h in this case, and this relationship may thus be
written as . _

9 =-%(2.016) - 1.325 - (2.5

In the case where an airfoil has central symmetry (both midchord
as well as fore-and-aft symmetry) it is obvious that the interference
from the wall will turn out to be zero at the location of the center of
symmetry, provided the value of the porosity is such that 4 = -1.325.

Translated by R. H. Cramer -
Cornell Aeronsutical Laboratory, Inc., o
Buffalo, New York
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Figure 3
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